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Abstract - This paper explores the rapidly 
evolving applications of Artificial 
Intelligence, (AI for short), in the field of 
Computer Science, as well as the practical 
programming side of real-world applications 
that AI brings to programmers and 
developers. We will explore the implications 
and transformation AI brings to the field 
from the scope of intelligent code generation 
to personalized user interfaces and 
automated testing. AI is streamlining 
production and deployment timelines for 
developers and enhancing user experiences 
for actors of applications, (Actors is another 
reference to users). The main topics we will 
dive into will be AI-powered development, 
the significance AI brings to development 
timelines and life cycles, and the broader 
implications it has for the future of the tech 
industry and user interactability. Finally, it 
will offer a personal reflection on the 
importance of human oversight, hybrid 
models, and ethical considerations in AI 
adoption. 
 

I.  Introduction 
      Artificial Intelligence (AI) has rapidly 
shifted over the last 20 years from a Sci-Fi 
Movie element and purely theoretical 
concept to a powerful driver in the 
exponential expansion of technology. In the 
modern-day era and tech stack of web 
development, cloud computing, user 

experience design, and automation. AI has 
become a necessary tool and expansion to 
the evolution of technology. The goal of this 
paper is to provide a layered comprehension 
to the reader about AI, its implications, and 
evolution. To that end, we will begin 
exploring the fundamentals of AI and 
machine learning and provide some insight 
into the inner workings of the models that 
drive its applications. As this is such a vast 
topic it will explore the fundamentals of AI, 
how it is classified in different manners, and 
its applications, but will leave some aspects 
to be further researched. 
 

II. Understanding the Basics 
      First, we will dive into the classification 
of different types of Artificial Intelligence 
Models. Early iterations of AI applications 
were built on machine learning models. 
These models were reliant on human 
intervention to process new information and 
perform tasks they were not initially trained 
for. These models could provide a level of 
‘perception’ but this was attuned to many 
developers providing constant evolution and 
groundwork to create this facade. For 
example, “Apple made Siri a feature of its 
iOS in 2011. This early version of Siri was 
trained to understand a set of highly specific 
statements and requests. Human intervention 
was required to expand Siri’s knowledge 
base and functionality.” [1]. Artificial 
Intelligence's big breakthrough came in 
2012 when Neural Networks were 
developed.  

A. Neural Networks 
      Neural Networks rely on machines that 
engage in success rates and reinforcement 
learning. This differs from the systems like 
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mappings for NLPs (Natural Language 
Processing) which would provide the 
‘perception’ of awareness of conversations 
or inquiries. This allowed the removal of 
human intervention to a degree because, 
unlike traditional machine learning models, 
Neural Networks provided the possibility for 
models to learn how to perform new tasks or 
make decisions without human intervention.  
To further explain, Neural Networks process 
data through layers. These layers consist 
widely of three defined components, the 
input layer, the hidden layer, and the output 
layer. The input layer handles raw data and 
passes it to the hidden layer. The hidden 
layer consists of interconnected nodes 
(Representative of Neurons in a human 
brain), these nodes apply a weighted 
mathematical transformation on the 
incoming signals passed in from the input 
layer. They calculate a weighted sum of 
inputs and apply an activation function. (The 
Activation Function determines whether a 
neuron should be activated or not.) This is 
then passed to the output layer which 
produces the final result of the network. This 
could be a variety of things dependent on the 
model ranging from classifications, 
generated text, recognition, and predictions. 
This layered system mimics the human 
brain's neurons, to our current 
understanding, and effectively makes this 
model adept at pattern recognition in 
complex and highly dimensional data such 
as images, speech, natural language, etc… 
 

B. Classification of AI 
      The classification of different types of 
AIs is disoriented across different sources 
but they often fall into three agreed upon 

categories with accompanied subcategories. 
The categories are as follows; AI based on 
capabilities, AI based on functionality, and 
AI based on Architecture.  

1) AI-Based on Capabilities 
      There are three subcategories in the 
capabilities category. First is Artificial 
Narrow AI, often referred to as weak AI. 
This is the AI we use today in 2025, it is 
easily trained to perform a single or 
narrow-scoped task and is often more 
efficient than a human would be at 
completing this task. “However, it can’t 
perform outside of its defined task. Instead, 
it targets a single subset of cognitive 
abilities and advances in that spectrum. Siri, 
Amazon’s Alexa, and IBM Watson® are 
examples of Narrow AI. Even OpenAI’s 
ChatGPT is considered a form of Narrow AI 
because it’s limited to the single task of 
text-based chat.” [1]. The next type of 
capability AI is General AI, often referred to 
as Strong AI. This classification type is 
purely theoretical in the modern day. It 
would encompass a model that essentially 
can have full context awareness and 
complete any task required of it. This is 
where we step into the realm of sentience 
from machines and could even have 
emotional understanding, innovation, 
creativity, etc… be possible by the model. 
The last type of AI in capability 
classifications is Super AI. This is strictly 
theoretical and would encompass more than 
we as human beings can comprehend. It 
would be capable of thinking, reasoning, 
learning, passing judgments, and possessing 
cognitive abilities. “The applications 
possessing Super AI capabilities will have 
evolved beyond the point of understanding 
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human sentiments and experiences to feel 
emotions, have needs, and possess beliefs 
and desires of their own.” [1]. 
 

2) AI-Based on Functionality  
      The next type of classification of AI is 
functionality. The first type is Reactive 
Machine AI. Reactive Machine AI is a 
system that has no memory and is designed 
with the intent of completing a task of 
narrow scope. Since they cannot collect or 
reference previous results or outcomes these 
models only work with the data they 
presently have available to them through 
input or analysis. These are often used in the 
analysis of vast amounts of statistical data or 
mathematical relations. The next type of 
functionality classification is Limited 
Memory AI. Limited Memory AI can recall 
past events or results and monitor changes in 
comparison to time. The limitation of 
Limited Memory AI is that it has a context 
window of comprehension, this means there 
is a limit to the data it can keep from past 
inquiries or events that are relevant to the 
current task it is attempting to compute. 
Limited Memory is used in tools like 
ChatGPT for generating text and can 
improve or worsen depending on the data it 
has access to and continuously trains on.  
The third type of AI in functionality is 
currently theoretical and is Theory of Mind 
AI. This AI would be more focused on 
inferring human emotions and motives. It 
would be able to understand and 
contextualize deep human social constructs 
such as emotions, innovation, inspiration, 
creativity, etc… The last type of AI in 
functionality is Self Aware AI, this is purely 
theoretical as well and can be classified as a 

type of low-level Super AI or Strong AI. 
Self Aware AI would essentially encompass 
the idea of sentience in Artificial 
Intelligence and could be attuned to saying 
the recreation of a Human being or another 
form of being that possesses a similar and 
equal level to our cognitive ability and 
comprehension of social constructs.   
 

3) AI-Based on Architecture 
      Architecture models are based on the 
strategy a model uses in its systems. There 
are many different types of Models and this 
is the least identifiable model category as 
many have the potential to overlap. They 
can be classified into 6 subsections, 
Machine Learning Models, Deep Learning 
Models, Natural Language Processing 
(NLP) Models, Computer Vision Models, 
Generative AI Models, and Hybrid Models. 
To go into all the subtypes and overlap for 
all these models would be quite redundant 
and could be derived into its own paper. 
Instead, let's highlight a specific model in 
the Generative AI category that has driven 
the ‘hype’ of AI over the last few years. This 
model is the Transformer based Model. 
Transformer models made their rise in a 
2017 paper from Google “Attention is All 
You Need” [2]. Transformers built upon the 
previous dominating model, 
encoder-decoder model structure, and built 
upon it further. “Most competitive neural 
sequence transduction models have an 
encoder-decoder structure [5, 2, 29]. Here, 
the encoder maps an input sequence of 
symbol representations (x1, ..., xn) to a 
sequence of continuous representations z = 
(z1, ..., zn). Given z, the decoder then 
generates an output sequence (y1, ..., ym) of 
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symbols one element at a time. At each step 
the model is auto-regressive [9], consuming 
the previously generated symbols as 
additional input when generating the next.” 
[2]. To break down transformers more 
simply there are generally six steps. The first 
step is to break input down into tokens, 
either by letter or by word typically. The 
next step is to translate these tokens into 
vectors, this means that tokens become a 
numerical representation of each letter or 
word. For example, lowercase ‘a’ in the 
alphabet is represented by 1, and lowercase 
‘z’ in the alphabet is represented by 26. The 
third step is the Self-Attention Mechanism. 
This simply means that it looks at and 
processes all the tokens at the same time and 
learns what words or letters have closer 
relations to each other. This is where the 
weighted sum comes into play and drives 
the power of context awareness for the 
model. The fourth step is Positional 
Encoding. Since the transformer reads 
everything in parallel, they also add 
information or metadata about word order 
using math, This is where weighted 
calculated sums come into play. The fifth 
step is the multi-layered system processes 
the data and their relations. It consists of 
multiple layers of self-attention and 
feed-forward networks to refine its 
comprehension. The final step is generating 
output based on everything it just processed. 
This could be a next-word prediction, text 
translation, answering queries, generating 
code, etc… This can scale to be more 
refined based on the amount of data it was 
trained on as well as the number of layers 
involved in the system.  
 

III. Computer Science 
Implications (Theory 
Based) 

      The implications of AI in the field of 
Computer Science will mostly be in 
reference to students in Universities, 
Research Associates, and professors 
researching as this is the most relevant and 
theory-based section of Computer Science. 
To further build upon that the AI models we 
talk about here will be Generative AI, 
LLMs, and more specifically Transformer 
models, Encoder-Decoder Models, etc…  
 

A. AI Debates in Education 
      The biggest debate in CS education and 
AI implies that AI poses a problem for 
human learning as it can just provide the 
answer for a student. Need a calculator app? 
Ask ChatGPT and complete it instantly. 
Now this is true to the extent that AI does 
pose a conflict for some students and the 
value they obtain from their education. But 
to inherently state that AI is posing a 
problem is incorrect. AI is a tool, a tool does 
not inherently inhibit the user’s ability to 
struggle through a problem and learn. Can a 
student use AI to quickly piece together 
functional code and complete a project for 
them, yes of course. Now that student didn’t 
inherently learn much from that assignment, 
but this is only relevant to projects of 
smaller scope. The more a student or any 
programmer increases the scope of a project 
and is reliant on AI the more redundant code 
and errors they will encounter as the project 
scales. This obstacle will force them to start 
learning two things. They will start to digest 
the information and strategies the AI uses in 
narrow scopes, which can be built upon to 
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slowly build a wider understanding of the 
concepts and practical use. The second thing 
they will learn is how to better leverage the 
tool of generative AI. So in this perspective, 
the programmer is still struggling through 
code as they take on more complex 
problems just with a personal assistant to 
answer all their queries. This is also an 
assumption that the user is straightforwardly 
querying the AI to complete tasks for them, 
which is the most negative outcome and 
over time the user will still learn concepts. 
Now think if a student uses AI to break 
things down into smaller components for 
them. They query it to explain the lines of 
code they don’t understand or ask for 
references. This will do nothing but expedite 
the learning curve of CS education. If you 
take this perspective AI is less like a cheat 
button to automatically accomplish things 
and more like a magnet to attract the needle 
in the haystack to learn, code, complete 
projects, etc quickly… To finalize the debate 
on AI in CS education, “Working hard and 
struggling is actually an important way of 
learning. When you’re given an answer, 
you’re not struggling or learning. And when 
you get more of a complex problem, it’s 
tedious to go back to the beginning of a 
large language model and troubleshoot it 
and integrate it.”[3]. This perfectly 
summarizes the previous point stated in the 
paragraph that initially the students who use 
AI to quickly accomplish the tasks for 
projects of smaller scope will suffer, but as 
they advance and run into large-scale 
projects and issues start appearing left and 
right they will be forced to struggle through 
and learn the basics, as well as learning how 
to more efficiently leverage AI as a tool. So 

it is naive to say that AI in the long term will 
damage developers.  
 

B. Challenges to Traditional CS 
Paradigms 

      One of the theory-based classes most CS 
majors will take at University will be CS 
Theory, or Theoretical Computations, etc… 
whatever name they call it. This is a class 
that fundamentally explores what is and isn’t 
computable by learning about Turing 
Machines, deterministic/nondeterministic 
models, and modern computers. CS students 
learn in this class that computation must be 
logical to be computable and follows a 
step-by-step procedure, which is widely 
quite true for almost everything in the field 
from theory to deploying code, to how the 
layers of the web work, all the way to 
making a simple square render in Python. 
The traditional view we are taught is that 
Turing Machines (TMs) define the 
boundaries of what is computable. “Turing 
Machines (TM) play a crucial role in the 
Theory of Computation (TOC). They are 
abstract computational devices used to 
explore the limits of what can be computed. 
Turing Machines help prove that certain 
languages and problems have no algorithmic 
solution”  [4]. So you learn in this course 
that all data and computations are traceable 
and verifiable in some manner. But then we 
encounter Neural Networks which often do 
not expose explicit rules for why a decision 
was made by the system. Even a small 
discrepancy (An Outlier) in a data set can 
skew the output quite drastically in an LLM 
for example. This would not occur in 
classical systems of computation. This is 
because before AI every software was 
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programmed and designed to do a task, 
whereas AI is trained to adapt its behavior 
based on patterns. This leads to the question 
is AI completing tasks? Is it computing 
answers? At first glance, one might think 
“Of course, it is, I asked ChatGPT to write 
me a poem about dogs and cats and it did.” 
But this is not inherently true. Yes, AI does 
solve things for us, but does it necessarily 
compute things in the way traditional 
systems would? No, AI is outputting the 
most likely result, not computing data. This 
is where AI enters the realm of 
non-determinism. This means that output 
can vary from the same input unlike our 
classic TMs would compute something. This 
shift poses a major challenge when it comes 
to the paradigms of the CS curriculum, as all 
previous topics in computability were 
deterministic models that could be 
simulated, traced, predicted, and verifiable. 
Now we have this probabilistic model that 
encompasses all AI, and it often is lacking in 
transparency. This leads to AI often being 
described as black boxes, their internal 
decision-making processes are difficult to 
comprehend. This leads to AI being in direct 
opposition to the classical deterministic 
models we used in the past, you could input 
the same data into a Generative AI (Let’s 
use OpenAI’s ChatGPT as an example), and 
every single output will vary due to its 
randomness seed. This leads to AI models 
often being uninterpretable, as stated before, 
and this even applies to the people who 
created these models. This poses challenges 
to the field in the guise of the question of 
what is computable. We for so long focused 
on deterministic computation, now that this 
new model has appeared, we may need to 

redefine the boundaries of what we define as 
computable in the CS field of theory. The 
more AI and probabilistic systems grow and 
work their way into more subsets of modern 
computing, the more CS theory will be 
required to evolve to this new expansion. An 
expansion where answers are not always 
deterministic, traceable, or even explainable 
in a sense. This could be one of the most 
significant shifts in the industry — not just 
in how we build software or increase 
efficiency, but in how we fundamentally 
define what it means to compute in the field 
of Computer Science 
 

IV. Programming Development  
Implications (Practical 
Based)  

      Now that we explored the theoretical 
implications AI brings to the Computer 
Science field, we can dive into some real 
examples of models and how they improve 
and hinder the developer world. We will 
avoid the debate of the AI-assisted code 
style being detrimental to developers as we 
discussed above and focus on the increased 
deployment of code, the redundant search 
for fixes, and how AI can be leveraged as an 
overall positive feature for developers in this 
section.  

 
A. Intelligent Code 

Generation Models 
      First, let’s dive into the generative 
capabilities of AI with a focus on generative 
AI and text-based models. Now, just to give 
some background on some popular models 
there are about five dominating models; 
Claude, ChatGPT, Copilot, Gemini, and 
DeepSeak. They are all hybrid models and 
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have their strengths and weaknesses, so to 
highlight these briefly:  
 

- ChatGPT: Super versatile, it excels 
in chatting, creative writing, and 
coding assistance with decent sizing 
on its project scaling. Probably the 
most dominant as well as 
mainstream of all the AI in this list. 
Also has some API integration that 
can expand upon its usefulness as a 
tool. 

- Gemini: Best for deep heavy 
searches, excels at deep diving into 
Google’s ecosystem, this is Google’s 
‘Flagship Model’. 

- Claude: Can Provide longer, more 
thoughtful responses, excels at 
writing and conversations, as well as 
good with code assistance. It is often 
praised as the safest of the models 
when it comes to sensitive tasks.   

- Copilot: Its primary strength is the 
integration right into dev tools and is 
also strong with code assistance. 
Copilot excels when writing 
boilerplate and general assistance in 
good structure like function names 
and enforcing naming conventions. 
(It is powered by OpenAI’s Codex 
variant) 

- DeepSeek: DeepSeek excels when it 
comes to transparency as it is an 
open-source LLM. It can compete 
with GPT and Claude when it comes 
to performance and generative 
benchmarks but its primary strength 
is its full transparency.  

 
 

- Honorable Mentions:  
 

- Meta’s Code Llama: 
Developed by Meta, Code 
Llama is also open-source 
like DeepSeek, and is 
optimized for programming 
tasks. It is lightweight and 
excels in local development 
like DeepSeek, its strengths 
are privacy and offline 
capabilities. 
 

- Mistral AI: A French AI 
company focused on 
open-source LLMs, excels in 
high-performance problem 
solving, data analysis, and 
numerical computations.  

         
B. Impact on Production 

Timelines 
      Now that you have some context into the 
main plaers influencing the developer field, 
let's break it down into the impact it has. 
There are three main key impact areas; 
Boilerplate and Autocompletion, Debugging 
and Refactoring, and Learning and 
Documenting.  
 

1) Boilerplate and 
Autocompletion 

            The use of AI as a codebase assistant 
is now streamlining code generation in its 
entirety. One of the clearest examples is 
handling boilerplate code. Boilerplate code 
is repetitive, structural code that often slows 
down beginners and experienced developers 
alike. A beginner working in Flask or PHP 
would have to look up how to build the 
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API-first endpoint or routing setup. With 
tools like ChatGPT integrated into the IDE, 
this process can be completed in a matter of 
seconds, and if the user doesn’t understand 
they only need to prompt it for an 
explanation until they start to comprehend 
the structure and functions. This is just one 
small example of how AI can increase 
personal and widespread development. To 
further this understanding here is a quote 
from a GitHub Research Article about 
‘Copilot’s Impact on Developer Productivity 
and Happiness’, developers who used 
GitHub Copilot completed the task 
significantly faster–55% faster than the 
developers who didn’t use GitHub Copilot 
[5]. This is definitive proof of AI saving 
time for all levels of developers, but it also 
lowers the entry barrier for developers of all 
levels. My reflection of AI is that it is as if 
your knowledge was the road you drove on, 
and when you run into gaps or potholes, AI 
is like the bridge to cross these safely and 
efficiently. It is a magnet to find the needle 
in the haystack quickly, whether that be 
comprehension of a language’s syntax, a 
library's base functionality, system admin 
setup commands from ufw to systemctl in 
Ubuntu, etc…  
       

2) Debugging and Refactoring  
      AI plays a vital role in debugging and 
refactoring as well. It can range from easy 
assistance for logical errors, syntax errors, 
typos, etc… to more complex error 
correction with smart prompting. 
Streamlining debugging and refactors is a 
massive contribution to developers as these 
are some of the most time-consuming tasks. 
Think about that singular mistype function 

name that your IDE Might not pick up, 
sometimes the most minor errors cause the 
most tedious debug situations especially 
when it comes to the freshness of the session 
for the developer. Normally, what could 
range from minutes to hours dependent on 
the developer to find and identify, can be 
found by an AI model in mere seconds. This 
is also a vital tool to self-learn as a 
developer, which is one of the most vital 
skills needed in the field of developing code. 
Think about a novice web dev working on 
whatever project they are rewriting NAV bar 
after NAV bar and footer after footer, this 
doesn’t sound time-consuming but when 
each page might have slight differences in 
functionality in the NAV for example this is 
how design errors could occur from copying 
and pastiung the code from the wrong page. 
Now consider a dev placed this code into an 
AI with a good prompt this AI has a strong 
chance to recommend the dev to use partials. 
The dev now learned about a more dynamic 
code practice, easily refactored it into their 
codebase with the AI’s help, and now has 
more modular and clean code. This is a 
super simple example but these small 
situations alone build better developers and 
streamline production times.  
 

3) Learning and Documenting 
      AI is also becoming a powerful 
personalized tutor and learning tool for 
developers of all levels. It can range to be an 
efficient teacher from the prompts of asking 
for a line-by-line explanation, adding 
comments into a script summarizing large 
codebase functionality, etc… tools like 
ChatGPT and Claude are helping devs 
comprehend and document their work faster 
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than ever before. Out with the old tedious 
search for a similar use case on 
StackOverflow and in with the magnet to 
find your Answer Needle in the haystack of 
information the Computer Science field is. 
This form of self-learning is even more 
useful because with smart prompting a user 
can have the generated explanations catered 
to their learning format. Now to touch upon 
the cons of this AI learning tool briefly, AI 
can often provide incorrect information but 
the same could be said from a 
StackOverflow post or a Reddit thread. But 
there is more on the negative of generative 
AI hallucinations in section II and section 
III, just a necessary disclaimer to touch 
upon. AI is also improving how developers 
document their work. With a single prompt 
or query, an LLM can generate inline 
comments in a script, to MarkDown 
documentation that is clear and concise for 
the whole codebase. This doesn’t only speed 
up project life cycles and improve cognitive 
load across teams, it helps maintain clearer 
and more consistent communication for 
company teams, open source projects, and 
singular developers documenting codebases 
for their followers. As AI Senior Dev at 
Tesla, Andrej Kerpathy said “The hottest 
new programming language is English”[6].  
Generative AI is allowing the unique 
combination of tutoring and 
self-documentation support with so much 
more as well. While it has its flaws, it is 
accelerating self-education, improving code 
readability, and making better developers 
with speed.  
 
 
 

V. Conclusion 
      In conclusion, the integration and 
evolution of AI into the field of Computer 
Science over the last few years marks a 
paradigm shift in both the theoretical 
foundation as well as the practical 
applications of the field. From the 
possibility of redefining the meaning of 
what is computable in AI, to the 
transformation of how developers learn, 
debug, and code, AI is rapidly expanding 
and working its way to the core of a 
developer’s toolkit and professors' 
curriculum topic. While this new software’s 
ability to enhance efficiency and lower 
learning barriers is undeniable it is still 
accompanied by its flaws. The black-box 
nature of the LLMs and AI in general as 
well as the risk of overreliance on the 
models highlight the need for continued 
human oversight. The further evolution of 
AI in the future will hopefully expand the 
reach and depth of human innovation, 
creativity, logic, and problem-solving in 
Computer Science.  
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