
The Evolution of AI and its Implications
Kyler Grahame

Department of Computer Science,
Montclair State University

Montclair, New Jersey
, kjgbusiness8@gmail.com
 grahamek1@montclair.edu

Abstract - This paper explores the rapidly
evolving applications of Artificial
Intelligence, (AI for short), in the field of
Computer Science, as well as the practical
programming side of real-world applications
that AI brings to programmers and
developers. We will explore the implications
and transformation AI brings to the field
from the scope of intelligent code generation
to personalized user interfaces and
automated testing. AI is streamlining
production and deployment timelines for
developers and enhancing user experiences
for actors of applications, (Actors is another
reference to users). The main topics we will
dive into will be AI-powered development,
the significance AI brings to development
timelines and life cycles, and the broader
implications it has for the future of the tech
industry and user interactability. Finally, it
will offer a personal reflection on the
importance of human oversight, hybrid
models, and ethical considerations in AI
adoption.

I. Introduction
 Artificial Intelligence (AI) has rapidly
shifted over the last 20 years from a Sci-Fi
Movie element and purely theoretical
concept to a powerful driver in the
exponential expansion of technology. In the
modern-day era and tech stack of web
development, cloud computing, user

experience design, and automation. AI has
become a necessary tool and expansion to
the evolution of technology. The goal of this
paper is to provide a layered comprehension
to the reader about AI, its implications, and
evolution. To that end, we will begin
exploring the fundamentals of AI and
machine learning and provide some insight
into the inner workings of the models that
drive its applications. As this is such a vast
topic it will explore the fundamentals of AI,
how it is classified in different manners, and
its applications, but will leave some aspects
to be further researched.

II. Understanding the Basics
 First, we will dive into the classification
of different types of Artificial Intelligence
Models. Early iterations of AI applications
were built on machine learning models.
These models were reliant on human
intervention to process new information and
perform tasks they were not initially trained
for. These models could provide a level of
‘perception’ but this was attuned to many
developers providing constant evolution and
groundwork to create this facade. For
example, “Apple made Siri a feature of its
iOS in 2011. This early version of Siri was
trained to understand a set of highly specific
statements and requests. Human intervention
was required to expand Siri’s knowledge
base and functionality.” [1]. Artificial
Intelligence's big breakthrough came in
2012 when Neural Networks were
developed.

A. Neural Networks
 Neural Networks rely on machines that
engage in success rates and reinforcement
learning. This differs from the systems like

© Kyler Grahame; KylerG.com

mailto:kjgbusiness8@gmail.com
mailto:grahamek1@montclair.edu
http://kylerg.com

mappings for NLPs (Natural Language
Processing) which would provide the
‘perception’ of awareness of conversations
or inquiries. This allowed the removal of
human intervention to a degree because,
unlike traditional machine learning models,
Neural Networks provided the possibility for
models to learn how to perform new tasks or
make decisions without human intervention.
To further explain, Neural Networks process
data through layers. These layers consist
widely of three defined components, the
input layer, the hidden layer, and the output
layer. The input layer handles raw data and
passes it to the hidden layer. The hidden
layer consists of interconnected nodes
(Representative of Neurons in a human
brain), these nodes apply a weighted
mathematical transformation on the
incoming signals passed in from the input
layer. They calculate a weighted sum of
inputs and apply an activation function. (The
Activation Function determines whether a
neuron should be activated or not.) This is
then passed to the output layer which
produces the final result of the network. This
could be a variety of things dependent on the
model ranging from classifications,
generated text, recognition, and predictions.
This layered system mimics the human
brain's neurons, to our current
understanding, and effectively makes this
model adept at pattern recognition in
complex and highly dimensional data such
as images, speech, natural language, etc…

B. Classification of AI
 The classification of different types of
AIs is disoriented across different sources
but they often fall into three agreed upon

categories with accompanied subcategories.
The categories are as follows; AI based on
capabilities, AI based on functionality, and
AI based on Architecture.

1) AI-Based on Capabilities
 There are three subcategories in the
capabilities category. First is Artificial
Narrow AI, often referred to as weak AI.
This is the AI we use today in 2025, it is
easily trained to perform a single or
narrow-scoped task and is often more
efficient than a human would be at
completing this task. “However, it can’t
perform outside of its defined task. Instead,
it targets a single subset of cognitive
abilities and advances in that spectrum. Siri,
Amazon’s Alexa, and IBM Watson® are
examples of Narrow AI. Even OpenAI’s
ChatGPT is considered a form of Narrow AI
because it’s limited to the single task of
text-based chat.” [1]. The next type of
capability AI is General AI, often referred to
as Strong AI. This classification type is
purely theoretical in the modern day. It
would encompass a model that essentially
can have full context awareness and
complete any task required of it. This is
where we step into the realm of sentience
from machines and could even have
emotional understanding, innovation,
creativity, etc… be possible by the model.
The last type of AI in capability
classifications is Super AI. This is strictly
theoretical and would encompass more than
we as human beings can comprehend. It
would be capable of thinking, reasoning,
learning, passing judgments, and possessing
cognitive abilities. “The applications
possessing Super AI capabilities will have
evolved beyond the point of understanding

© Kyler Grahame; KylerG.com

http://kylerg.com

human sentiments and experiences to feel
emotions, have needs, and possess beliefs
and desires of their own.” [1].

2) AI-Based on Functionality
 The next type of classification of AI is
functionality. The first type is Reactive
Machine AI. Reactive Machine AI is a
system that has no memory and is designed
with the intent of completing a task of
narrow scope. Since they cannot collect or
reference previous results or outcomes these
models only work with the data they
presently have available to them through
input or analysis. These are often used in the
analysis of vast amounts of statistical data or
mathematical relations. The next type of
functionality classification is Limited
Memory AI. Limited Memory AI can recall
past events or results and monitor changes in
comparison to time. The limitation of
Limited Memory AI is that it has a context
window of comprehension, this means there
is a limit to the data it can keep from past
inquiries or events that are relevant to the
current task it is attempting to compute.
Limited Memory is used in tools like
ChatGPT for generating text and can
improve or worsen depending on the data it
has access to and continuously trains on.
The third type of AI in functionality is
currently theoretical and is Theory of Mind
AI. This AI would be more focused on
inferring human emotions and motives. It
would be able to understand and
contextualize deep human social constructs
such as emotions, innovation, inspiration,
creativity, etc… The last type of AI in
functionality is Self Aware AI, this is purely
theoretical as well and can be classified as a

type of low-level Super AI or Strong AI.
Self Aware AI would essentially encompass
the idea of sentience in Artificial
Intelligence and could be attuned to saying
the recreation of a Human being or another
form of being that possesses a similar and
equal level to our cognitive ability and
comprehension of social constructs.

3) AI-Based on Architecture
 Architecture models are based on the
strategy a model uses in its systems. There
are many different types of Models and this
is the least identifiable model category as
many have the potential to overlap. They
can be classified into 6 subsections,
Machine Learning Models, Deep Learning
Models, Natural Language Processing
(NLP) Models, Computer Vision Models,
Generative AI Models, and Hybrid Models.
To go into all the subtypes and overlap for
all these models would be quite redundant
and could be derived into its own paper.
Instead, let's highlight a specific model in
the Generative AI category that has driven
the ‘hype’ of AI over the last few years. This
model is the Transformer based Model.
Transformer models made their rise in a
2017 paper from Google “Attention is All
You Need” [2]. Transformers built upon the
previous dominating model,
encoder-decoder model structure, and built
upon it further. “Most competitive neural
sequence transduction models have an
encoder-decoder structure [5, 2, 29]. Here,
the encoder maps an input sequence of
symbol representations (x1, ..., xn) to a
sequence of continuous representations z =
(z1, ..., zn). Given z, the decoder then
generates an output sequence (y1, ..., ym) of

© Kyler Grahame; KylerG.com

http://kylerg.com

symbols one element at a time. At each step
the model is auto-regressive [9], consuming
the previously generated symbols as
additional input when generating the next.”
[2]. To break down transformers more
simply there are generally six steps. The first
step is to break input down into tokens,
either by letter or by word typically. The
next step is to translate these tokens into
vectors, this means that tokens become a
numerical representation of each letter or
word. For example, lowercase ‘a’ in the
alphabet is represented by 1, and lowercase
‘z’ in the alphabet is represented by 26. The
third step is the Self-Attention Mechanism.
This simply means that it looks at and
processes all the tokens at the same time and
learns what words or letters have closer
relations to each other. This is where the
weighted sum comes into play and drives
the power of context awareness for the
model. The fourth step is Positional
Encoding. Since the transformer reads
everything in parallel, they also add
information or metadata about word order
using math, This is where weighted
calculated sums come into play. The fifth
step is the multi-layered system processes
the data and their relations. It consists of
multiple layers of self-attention and
feed-forward networks to refine its
comprehension. The final step is generating
output based on everything it just processed.
This could be a next-word prediction, text
translation, answering queries, generating
code, etc… This can scale to be more
refined based on the amount of data it was
trained on as well as the number of layers
involved in the system.

III. Computer Science
Implications (Theory
Based)

 The implications of AI in the field of
Computer Science will mostly be in
reference to students in Universities,
Research Associates, and professors
researching as this is the most relevant and
theory-based section of Computer Science.
To further build upon that the AI models we
talk about here will be Generative AI,
LLMs, and more specifically Transformer
models, Encoder-Decoder Models, etc…

A. AI Debates in Education
 The biggest debate in CS education and
AI implies that AI poses a problem for
human learning as it can just provide the
answer for a student. Need a calculator app?
Ask ChatGPT and complete it instantly.
Now this is true to the extent that AI does
pose a conflict for some students and the
value they obtain from their education. But
to inherently state that AI is posing a
problem is incorrect. AI is a tool, a tool does
not inherently inhibit the user’s ability to
struggle through a problem and learn. Can a
student use AI to quickly piece together
functional code and complete a project for
them, yes of course. Now that student didn’t
inherently learn much from that assignment,
but this is only relevant to projects of
smaller scope. The more a student or any
programmer increases the scope of a project
and is reliant on AI the more redundant code
and errors they will encounter as the project
scales. This obstacle will force them to start
learning two things. They will start to digest
the information and strategies the AI uses in
narrow scopes, which can be built upon to

© Kyler Grahame; KylerG.com

http://kylerg.com

slowly build a wider understanding of the
concepts and practical use. The second thing
they will learn is how to better leverage the
tool of generative AI. So in this perspective,
the programmer is still struggling through
code as they take on more complex
problems just with a personal assistant to
answer all their queries. This is also an
assumption that the user is straightforwardly
querying the AI to complete tasks for them,
which is the most negative outcome and
over time the user will still learn concepts.
Now think if a student uses AI to break
things down into smaller components for
them. They query it to explain the lines of
code they don’t understand or ask for
references. This will do nothing but expedite
the learning curve of CS education. If you
take this perspective AI is less like a cheat
button to automatically accomplish things
and more like a magnet to attract the needle
in the haystack to learn, code, complete
projects, etc quickly… To finalize the debate
on AI in CS education, “Working hard and
struggling is actually an important way of
learning. When you’re given an answer,
you’re not struggling or learning. And when
you get more of a complex problem, it’s
tedious to go back to the beginning of a
large language model and troubleshoot it
and integrate it.”[3]. This perfectly
summarizes the previous point stated in the
paragraph that initially the students who use
AI to quickly accomplish the tasks for
projects of smaller scope will suffer, but as
they advance and run into large-scale
projects and issues start appearing left and
right they will be forced to struggle through
and learn the basics, as well as learning how
to more efficiently leverage AI as a tool. So

it is naive to say that AI in the long term will
damage developers.

B. Challenges to Traditional CS
Paradigms

 One of the theory-based classes most CS
majors will take at University will be CS
Theory, or Theoretical Computations, etc…
whatever name they call it. This is a class
that fundamentally explores what is and isn’t
computable by learning about Turing
Machines, deterministic/nondeterministic
models, and modern computers. CS students
learn in this class that computation must be
logical to be computable and follows a
step-by-step procedure, which is widely
quite true for almost everything in the field
from theory to deploying code, to how the
layers of the web work, all the way to
making a simple square render in Python.
The traditional view we are taught is that
Turing Machines (TMs) define the
boundaries of what is computable. “Turing
Machines (TM) play a crucial role in the
Theory of Computation (TOC). They are
abstract computational devices used to
explore the limits of what can be computed.
Turing Machines help prove that certain
languages and problems have no algorithmic
solution” [4]. So you learn in this course
that all data and computations are traceable
and verifiable in some manner. But then we
encounter Neural Networks which often do
not expose explicit rules for why a decision
was made by the system. Even a small
discrepancy (An Outlier) in a data set can
skew the output quite drastically in an LLM
for example. This would not occur in
classical systems of computation. This is
because before AI every software was

© Kyler Grahame; KylerG.com

http://kylerg.com

programmed and designed to do a task,
whereas AI is trained to adapt its behavior
based on patterns. This leads to the question
is AI completing tasks? Is it computing
answers? At first glance, one might think
“Of course, it is, I asked ChatGPT to write
me a poem about dogs and cats and it did.”
But this is not inherently true. Yes, AI does
solve things for us, but does it necessarily
compute things in the way traditional
systems would? No, AI is outputting the
most likely result, not computing data. This
is where AI enters the realm of
non-determinism. This means that output
can vary from the same input unlike our
classic TMs would compute something. This
shift poses a major challenge when it comes
to the paradigms of the CS curriculum, as all
previous topics in computability were
deterministic models that could be
simulated, traced, predicted, and verifiable.
Now we have this probabilistic model that
encompasses all AI, and it often is lacking in
transparency. This leads to AI often being
described as black boxes, their internal
decision-making processes are difficult to
comprehend. This leads to AI being in direct
opposition to the classical deterministic
models we used in the past, you could input
the same data into a Generative AI (Let’s
use OpenAI’s ChatGPT as an example), and
every single output will vary due to its
randomness seed. This leads to AI models
often being uninterpretable, as stated before,
and this even applies to the people who
created these models. This poses challenges
to the field in the guise of the question of
what is computable. We for so long focused
on deterministic computation, now that this
new model has appeared, we may need to

redefine the boundaries of what we define as
computable in the CS field of theory. The
more AI and probabilistic systems grow and
work their way into more subsets of modern
computing, the more CS theory will be
required to evolve to this new expansion. An
expansion where answers are not always
deterministic, traceable, or even explainable
in a sense. This could be one of the most
significant shifts in the industry — not just
in how we build software or increase
efficiency, but in how we fundamentally
define what it means to compute in the field
of Computer Science

IV. Programming Development
Implications (Practical
Based)

 Now that we explored the theoretical
implications AI brings to the Computer
Science field, we can dive into some real
examples of models and how they improve
and hinder the developer world. We will
avoid the debate of the AI-assisted code
style being detrimental to developers as we
discussed above and focus on the increased
deployment of code, the redundant search
for fixes, and how AI can be leveraged as an
overall positive feature for developers in this
section.

A. Intelligent Code

Generation Models
 First, let’s dive into the generative
capabilities of AI with a focus on generative
AI and text-based models. Now, just to give
some background on some popular models
there are about five dominating models;
Claude, ChatGPT, Copilot, Gemini, and
DeepSeak. They are all hybrid models and

© Kyler Grahame; KylerG.com

http://kylerg.com

have their strengths and weaknesses, so to
highlight these briefly:

- ChatGPT: Super versatile, it excels
in chatting, creative writing, and
coding assistance with decent sizing
on its project scaling. Probably the
most dominant as well as
mainstream of all the AI in this list.
Also has some API integration that
can expand upon its usefulness as a
tool.

- Gemini: Best for deep heavy
searches, excels at deep diving into
Google’s ecosystem, this is Google’s
‘Flagship Model’.

- Claude: Can Provide longer, more
thoughtful responses, excels at
writing and conversations, as well as
good with code assistance. It is often
praised as the safest of the models
when it comes to sensitive tasks.

- Copilot: Its primary strength is the
integration right into dev tools and is
also strong with code assistance.
Copilot excels when writing
boilerplate and general assistance in
good structure like function names
and enforcing naming conventions.
(It is powered by OpenAI’s Codex
variant)

- DeepSeek: DeepSeek excels when it
comes to transparency as it is an
open-source LLM. It can compete
with GPT and Claude when it comes
to performance and generative
benchmarks but its primary strength
is its full transparency.

- Honorable Mentions:

- Meta’s Code Llama:
Developed by Meta, Code
Llama is also open-source
like DeepSeek, and is
optimized for programming
tasks. It is lightweight and
excels in local development
like DeepSeek, its strengths
are privacy and offline
capabilities.

- Mistral AI: A French AI
company focused on
open-source LLMs, excels in
high-performance problem
solving, data analysis, and
numerical computations.

B. Impact on Production

Timelines
 Now that you have some context into the
main plaers influencing the developer field,
let's break it down into the impact it has.
There are three main key impact areas;
Boilerplate and Autocompletion, Debugging
and Refactoring, and Learning and
Documenting.

1) Boilerplate and
Autocompletion

 The use of AI as a codebase assistant
is now streamlining code generation in its
entirety. One of the clearest examples is
handling boilerplate code. Boilerplate code
is repetitive, structural code that often slows
down beginners and experienced developers
alike. A beginner working in Flask or PHP
would have to look up how to build the

© Kyler Grahame; KylerG.com

http://kylerg.com

API-first endpoint or routing setup. With
tools like ChatGPT integrated into the IDE,
this process can be completed in a matter of
seconds, and if the user doesn’t understand
they only need to prompt it for an
explanation until they start to comprehend
the structure and functions. This is just one
small example of how AI can increase
personal and widespread development. To
further this understanding here is a quote
from a GitHub Research Article about
‘Copilot’s Impact on Developer Productivity
and Happiness’, developers who used
GitHub Copilot completed the task
significantly faster–55% faster than the
developers who didn’t use GitHub Copilot
[5]. This is definitive proof of AI saving
time for all levels of developers, but it also
lowers the entry barrier for developers of all
levels. My reflection of AI is that it is as if
your knowledge was the road you drove on,
and when you run into gaps or potholes, AI
is like the bridge to cross these safely and
efficiently. It is a magnet to find the needle
in the haystack quickly, whether that be
comprehension of a language’s syntax, a
library's base functionality, system admin
setup commands from ufw to systemctl in
Ubuntu, etc…

2) Debugging and Refactoring
 AI plays a vital role in debugging and
refactoring as well. It can range from easy
assistance for logical errors, syntax errors,
typos, etc… to more complex error
correction with smart prompting.
Streamlining debugging and refactors is a
massive contribution to developers as these
are some of the most time-consuming tasks.
Think about that singular mistype function

name that your IDE Might not pick up,
sometimes the most minor errors cause the
most tedious debug situations especially
when it comes to the freshness of the session
for the developer. Normally, what could
range from minutes to hours dependent on
the developer to find and identify, can be
found by an AI model in mere seconds. This
is also a vital tool to self-learn as a
developer, which is one of the most vital
skills needed in the field of developing code.
Think about a novice web dev working on
whatever project they are rewriting NAV bar
after NAV bar and footer after footer, this
doesn’t sound time-consuming but when
each page might have slight differences in
functionality in the NAV for example this is
how design errors could occur from copying
and pastiung the code from the wrong page.
Now consider a dev placed this code into an
AI with a good prompt this AI has a strong
chance to recommend the dev to use partials.
The dev now learned about a more dynamic
code practice, easily refactored it into their
codebase with the AI’s help, and now has
more modular and clean code. This is a
super simple example but these small
situations alone build better developers and
streamline production times.

3) Learning and Documenting
 AI is also becoming a powerful
personalized tutor and learning tool for
developers of all levels. It can range to be an
efficient teacher from the prompts of asking
for a line-by-line explanation, adding
comments into a script summarizing large
codebase functionality, etc… tools like
ChatGPT and Claude are helping devs
comprehend and document their work faster

© Kyler Grahame; KylerG.com

http://kylerg.com

than ever before. Out with the old tedious
search for a similar use case on
StackOverflow and in with the magnet to
find your Answer Needle in the haystack of
information the Computer Science field is.
This form of self-learning is even more
useful because with smart prompting a user
can have the generated explanations catered
to their learning format. Now to touch upon
the cons of this AI learning tool briefly, AI
can often provide incorrect information but
the same could be said from a
StackOverflow post or a Reddit thread. But
there is more on the negative of generative
AI hallucinations in section II and section
III, just a necessary disclaimer to touch
upon. AI is also improving how developers
document their work. With a single prompt
or query, an LLM can generate inline
comments in a script, to MarkDown
documentation that is clear and concise for
the whole codebase. This doesn’t only speed
up project life cycles and improve cognitive
load across teams, it helps maintain clearer
and more consistent communication for
company teams, open source projects, and
singular developers documenting codebases
for their followers. As AI Senior Dev at
Tesla, Andrej Kerpathy said “The hottest
new programming language is English”[6].
Generative AI is allowing the unique
combination of tutoring and
self-documentation support with so much
more as well. While it has its flaws, it is
accelerating self-education, improving code
readability, and making better developers
with speed.

V. Conclusion
 In conclusion, the integration and
evolution of AI into the field of Computer
Science over the last few years marks a
paradigm shift in both the theoretical
foundation as well as the practical
applications of the field. From the
possibility of redefining the meaning of
what is computable in AI, to the
transformation of how developers learn,
debug, and code, AI is rapidly expanding
and working its way to the core of a
developer’s toolkit and professors'
curriculum topic. While this new software’s
ability to enhance efficiency and lower
learning barriers is undeniable it is still
accompanied by its flaws. The black-box
nature of the LLMs and AI in general as
well as the risk of overreliance on the
models highlight the need for continued
human oversight. The further evolution of
AI in the future will hopefully expand the
reach and depth of human innovation,
creativity, logic, and problem-solving in
Computer Science.

© Kyler Grahame; KylerG.com

http://kylerg.com

REFERENCES

[1] IBM Data and AI Team, “Types of Artificial Intelligence | IBM,” www.ibm.com,

Oct. 12, 2023. https://www.ibm.com/think/topics/artificial-intelligence-types

 [2] A. Vaswani et al., “Attention Is All You Need | Google”, 2017.
proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a
845aa-Paper.pdf

 [3] E. Shein, “The Impact of AI on Computer Science Education –
Communications of the ACM,” Acm.org, vol. 67, no. 9, Jul. 2024,
https://cacm.acm.org/news/the-impact-of-ai-on-computer-science-education/

 [4] GeeksforGeeks, “Turing Machine in TOC,” GeeksforGeeks, May 04, 2016.
https://www.geeksforgeeks.org/turing-machine-in-toc/

[5] E. Kalliamvakou, “Research: quantifying GitHub Copilot’s impact on
developer productivity and happiness,” The GitHub Blog, Sep. 07, 2022.
https://github.blog/news-insights/research/research-quantifying-github-copilots-im
pact-on-developer-productivity-and-happiness/

 [6] T. Bhattacharjee, “2024: The Year English Changed the Coding Game Forever |
AIM,” Analytics India Magazine, Dec. 06, 2024.
https://analyticsindiamag.com/ai-trends/2024-the-year-english-changed-the-coding
-game-forever/ (accessed Jun. 16, 2025).

© Kyler Grahame; KylerG.com

https://www.ibm.com/think/topics/artificial-intelligence-types
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://cacm.acm.org/news/the-impact-of-ai-on-computer-science-education/
https://www.geeksforgeeks.org/turing-machine-in-toc/
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://analyticsindiamag.com/ai-trends/2024-the-year-english-changed-the-coding-game-forever/
https://analyticsindiamag.com/ai-trends/2024-the-year-english-changed-the-coding-game-forever/
http://kylerg.com

